Illumina DRAGEN[™] Bio-IT Platform

Raul Torrieri

Field Bioinformatics Scientist – Illumina LATAM

illumina

For Research Use Only. Not for use in diagnostic procedures. © 2020 Illumina, Inc. All rights reserved.

Setting the Stage

Investing in Secondary Analysis

Business Considerations for Investing in Secondary Analysis

Upfront Investments

Key things to consider when implementing secondary analysis include:

- Upfront hardware investments
 - Bioinformatics & IT teams
- Compute and storage costs
- Direct instrument integration
- Security and compliance
- Ensuring accuracy
- Turnaround time
- Out of the box / Plug and play

02

Ability to Scale as You Grow

When adopting NGS, it's essential to choose a secondary analysis solution that is built for future expectations of scale.

Sequencing at Scale

Conducting NGS at scale poses a unique set of challenges

illumına[®]

01

02

03

High Performance Secondary Analysis

Accurate

Detect SNPs and INDELs with high sensitivity and specificity

Ultra-rapid

Reduce analysis to ~25 minutes per 30x whole genome

Cost-efficient & scalable

Scale as needed while keeping costs low

Translating Sequencing Data into Insights

DRAGEN[™] is Hardware-Accelerated Secondary Analysis Dynamic Read Analysis for GENomics

DRAGEN Software Pipelines

Flexible Data Analysis

Versatile Suite of Secondary Analysis Pipelines All DRAGEN Pipelines can run on a single DRAGEN Platform

Performs transcriptome analysis starting with splice junction discovery and alignment, followed by gene fusion detection.

Capable of ultra-rapid mapping and aligning DNA and RNA for both exomes and genomes.

New and enhanced DRAGEN pipelines are released periodically. For a comprehensive list, visit www.Illumina.com/DRAGEN

illumına®

The Values of DRAGEN

Easy to Implement From command line to push-button

Bioinformatics Expertise

Push-button

- Simple Graphical User Interface (GUI)
- Managed service
- HIPAA* and GDPR compliance
- · Workgroup capabilities
- · Easy data sharing

Single command launch

- Easy-to-learn Linux based Command Line Interface (CLI)
- Simple command line execution

Advanced command line

- Script back-to-back jobs
- Make different configuration files for different applications

On-premise

*HIPAA compatibility applies in the US only with BaseSpace Enterprise

illumına

Record-Breaking Analysis Speed

Guinness World Records[®] Fastest Genetic Diagnosis

Guinness World Records[®] Fastest Analysis of 1,000 Genomes

2hr25min

In 2018, Rady Children's Institute for Genomic Medicine set the Guinness World Records[®] for Fastest Genetic Diagnosis leveraging the Illumina DRAGEN Bio-IT Platform. In 2017, Children's Hospital of Philadelphia (CHOP) set the Guinness World Records[®] for Fastest Analysis of 1,000 Genomes using the Illumina DRAGEN Bio-IT Platform in the cloud.

Accelerated Speeds

Analyze more in less time

Accelerated Speeds

DRAGEN on-premise v. BWA+GATK

Accelerated Speeds

DRAGEN on BaseSpace Sequence Hub v. BWA+GATK

Accurate Data

Detects small variants, copy number variants and structural variants with high analytical **sensitivity** and **specificity**

DRAGEN identified all 50 hidden variants and ranked 1st in the following categories*

Hidden Variants	Indel Precision	Indel Recall	Indel F-Score	SNP F-score	SNP Recall
50/50	1 st				

*Amongst entries that identified all hidden variants

Accurate Data—Small Variant Calling SNV

DRAGEN detects fewer false positive and false negative SNV calls

illumına[®]

Accurate Data—Small Variant Calling Indels

DRAGEN detects fewer false positive and false negative indels

illumına

DRAGEN Metrics

The DRAGEN Platform Produces a Robust Portfolio of Metrics

Cost-Effective

1 DRAGEN Server can replace up to 30 traditional compute instances

Reduce Hardware Investment

Less compute, storage, power and other associated costs.

Reduce Storage footprint by 50% using compression (CRAM)

Smaller Storage Footprint

Seamless data compression under-the-hood with CRAM output

\$5/Genome* on BaseSpace Sequence Hub

Low Cost Cloud Analysis

Most DRAGEN pipelines run at \$5 per sample on BaseSpace Sequence Hub

*Approximate cost. Varies based on input sample used. FASTQ to SNVs.

illumına[®]

DRAGEN in Practice

Popular Application Areas

TCG

Rare Genetic Disease

Reduces turnaround times required for genomic analysis, when fast results can be a critical factor.

Oncology

Easy-to-implement, cost effective and accelerated secondary analysis of whole exomes and genomes for cancer research.

Agrigenomics

The DRAGEN Platform is well suited to handle large samples and repetitive elements. With a provided reference, the DRAGEN Platform can analyze animals and plants of varying genomic complexities.

Population Genomics

The DRAGEN Platform can rapidly analyze sequenced samples, and accelerate reanalysis as computational tools improve over time.

illumına®

NA12878 Titration INDEL Recall and Precision

Data generated by SickKids June 2019

illumina

SickKids

GATK4 Hard Filtering vs. DRAGEN ROC InDels

Data generated by SickKids June 2019

illumina

SickKids

DRAGEN on BaseSpace[™] Sequence Hub

Combining the Power of DRAGEN with the Flexibility of the Cloud

DRAGEN on BaseSpace Sequence Hub

DRAGEN on BaseSpace Sequence Hub

Accurate, rapid secondary analysis in an easy-to-use, cloud-based environment

Available Pipelines

- ORAGEN Germline Pipeline
- DRAGEN Somatic Pipeline
- ORAGEN Enrichment Pipeline (Q4 19)
- ORAGEN RNA Pipeline
- DRAGEN Joint Genotyping Pipeline
- DRAGEN Methylation Pipeline
- DRAGEN Reference Builder

illumına[®]

High Performance Analysis, Simple Workflow

BaseSpace Sequence Hub—Security in the Cloud

Independently audited

illumına®

DRAGEN Pipeline Overviews

Mapping & Aligning—Germline Pipeline Example

Position Sorting—Germline Pipeline Example

Duplicate Marking—Germline Pipeline Example

illumına®

Variant Calling—Germline Pipeline Example

illumına®

DRAGEN Germline Pipeline

DRAGEN Germline Pipeline—Accuracy

Highly accurate variant calling at low coverage

The DRAGEN v3 Germline Pipeline demonstrates high analytical sensitivity with relatively low false positive counts at 50x coverage. Performance comparable to GATK 4.1 at 50x coverage is possible with DRAGEN v3 at coverages lower than 50x.

DRAGEN Somatic Pipeline

Tumor/Normal Mode

DRAGEN Somatic Pipeline

Tumor-only Mode

DRAGEN RNA Pipeline

Gene Fusion Detection & Quantification

DRAGEN Joint Genotyping

DRAGEN Automatic QC Metrics Reporting: Mapper

Removes the need to run downstream tools for QC

- Number of samples **Reads Processed** Total Biallelic **Multiallelic SNPs** INDELs **MNPs**
- **SNP** Transitions
- **SNP** Transversions
- Ti/Tv ratio

Heterozygous Homozygous \checkmark Het/Hom ratio 1 In dbSNP \checkmark Novel (\checkmark) Total \checkmark Biallelic \checkmark Multiallelic \checkmark **SNPs** \checkmark INDELs **MNPs** \checkmark

DRAGEN Automatic QC Metrics Reporting: Variant Caller

- · Total input reads
- Number of duplicate reads (marked not removed)
- Number of unique reads
- Reads with mate sequenced
- Reads without mate sequenced
- QC-failed reads
- Mapped reads
- Number of unique & mapped reads (excl. dups)
- Unmapped reads
- Singleton reads (itself mapped; mate unmapped)
- Paired reads (itself & mate mapped)
- · Properly paired reads
- Not properly paired reads (discordant)
- Reads with MAPQ [40:inf)
- Reads with MAPQ [30:40)
- Reads with MAPQ [20:30)
- Reads with MAPQ [10:20)
- Total reads in RG
- Supplementary (chimeric) alignments
- Average sequenced coverage over genome

- Total alignments
- Secondary alignments
- Supplementary (chimeric) alignments
- Estimated read length
- Bases in reference genome
- Bases in target bed [% of genome]
- Average sequenced coverage over genome
- Average alignment coverage over genome
- PCT of genome with coverage [40x:inf)
- PCT of genome with coverage [30x:40x)
- PCT of genome with coverage [20x:30x)
- PCT of genome with coverage [10x:20x)
- PCT of genome with coverage [5x:10x)
- PCT of genome with coverage [2x: 5x)
- PCT of genome with coverage [1x: 2x)
- PCT of genome with coverage [0x: 1x)
- DRAGEN mapping rate [mil. reads/second]
- Secondary alignments
- Estimated read length
- Insert length: mean

- Number of duplicate reads (marked)
- Number of unique reads
- · Reads with mate sequenced
- · Reads without mate sequenced
- QC-failed reads
- Mapped reads
- Number of unique & mapped reads (excl. dups)
- Unmapped reads
- Singleton reads (itself mapped; mate unmapped)
- Paired reads (itself & mate mapped)
- Properly paired reads
- Not properly paired reads (discordant)
- Reads with MAPQ [40:inf)
- Reads with MAPQ [30:40)
- Reads with MAPQ [20:30)
- Reads with MAPQ [10:20)
- Reads with MAPQ [0:10)
- Total alignments
- Secondary alignments
- Insert length: standard deviation

illumına

Thank You

techsupport@illumina.com | rtorrieri@illumina.com

illumina

© 2020 Illumina, Inc. All rights reserved.